Bio-solubilization of Rock Phosphate and Plant Growth Promotion by *Aspergillus niger* TMPS1 in Ultisol and Vertisol

Manoj Shrivastava and S.F.D'Souza Nuclear Agriculture and Biotechnology Division Bhabha Atomic Research Centre Trombay, Mumbai-400085 India Main Concern Related to Phosphorus Research

Agricultural point of view

Phosphorus requirement for sustainable crop production

Environmental point of view

Soil or fertilizer phosphorus contribution
to eutrophication of aquatic environments

Facts

- P is an essential plant nutrient
- Global Rock Phosphate (RPs) Production >160 mmt (2008)
- Most RPs are not suitable for phosphatic fertilizer production due to low reactivity and impurities present in them
- Low-grade rock phosphate can be utilized as direct application P fertilizer with or without processing
- Application of rock phosphate in conjunction with phosphate solubilizing microorganisms

Soil Phosphorus Cycle

Exportations in Plant and animal Products

OBJECTIVES

The overall objective of this study was to evaluate the efficacy of a fungus Aspergillus niger strain TMPS1 isolated from mangrove rhizosphere as phosphate solubilizing bio-fertilizer under greenhouse conditions using ³²p isotope dilution technique

Isolation of Fungus from Soil

- Soil: Rhizospheric soil of Mangrove
 - Media: Pikovskaya's agar plates

Formation of a clear halo around the fungal growth after 5 days of incubation

Aspergillus niger TMPS1

Radiotracers for phosphorus

- ³²P
- T_{1/2}----14.3 DAYS
- ß-EMITTER
- E_{max}.---1.71 MeV
- COUNTING
 - i) GM
 - ii) Cerenkov or LSC

• ³³P

- T_{1/2}----25 DAYS
- **ß-EMITTER**
- E_{max.}---0.248 MeV
- COUNTING

ⁱ⁾ LSC

Greenhouse experimental details

CROP

- VARIETY SOIL
- **PbW 343** 2 kg soil per pot **Black soil (Vertisol) Red Soil (Ultisol)**

Wheat (Triticum aestivum)

- **TREATMENTS**
 - Control (No P)
 - Soil+ ³²P
 - Soil+ TMPS1+ ³²P
 - Soil + LRP+³²P
 - Soil + LRP + TMPS 1+ ³²P
 - Soil + PRP + ³²P
 - Soil+ PRP+ TMPS 1 + ³²P
- EXPERIMENTAL DESIGN
- REPLICATIONS
- **Activity applied**

CRD 04 5 MBq ³²P kg⁻¹ Soil

Characteristics of rock phosphates

Rock phosphate	Total P (%)	Citric Acid Soluble P (%)
Purulia (PRP)	14.4	1.623
Lalitpur (LRP)	9.8	0.425

PHYSICO-CHEMICAL CHARACTERISTICS OF EXPERIMENTAL SOIL

Sr. No.	Characteristics	Value	
		Vertisol	Ultisol
1	Texture	Clayey	Sandy Clay
2	pH (1:2) (soil:water)	8.20	4.8
3	Free CaCO ₃ (g kg ⁻¹)	36	ND
4	0.05M CaCl ₂ Extractable Al (mg kg ⁻¹)	ND	2.58
5	Moisture equivalent (%)	32.0	30.0
6	Organic carbon (g kg ⁻¹)	5.10	20.4
7	CEC (C mol (P+) kg ⁻¹)	51.13	8
8	Total N (g kg ⁻¹)	0.6	3.9
9	Available P (mg kg ⁻¹)	3.7	5.85
		(Olsen's)	(Bray I)
10	P fixing capacity (g kg ⁻¹)	620	700

Parameters studied

- Dry matter yield -DMY (g pot⁻¹)
- Total phosphorus uptake (mg pot⁻¹)
- Specific Activity (Bq mgP⁻¹)
- Phosphorus derived from lebeled soil
 - (bioavailable P) and rock phosphate (mg pot⁻¹)

CALCULATIONS

- Total P uptake by plant (mg P Pot⁻¹) $U_{TP} = DMY$ (mg Pot⁻¹) X (% P/100)
- DMY- Dry matter yield of plant
- Specific Activity (Bq mg P⁻¹) = Bq g⁻¹ plant/mg P g⁻¹ plant

%PdfS -- Fraction of P in the plant derived from the soil

% PdfS = $\frac{SA \text{ in Plant (Bq/mg P) in presence of } RP}{SA \text{ in plant (Bq/ mg P) in absence of } RP} \times 100}$

• %PdfRP----Fraction of P in the plant derived from the rock phosphate

%PdfRP = $1 - \frac{SA \text{ in Plant (Bq/mg P) in presence of RP}}{SA \text{ in plant (Bq/ mg P) in absence of RP}} \times 100$

• P uptake from labeled source (mgP Pot⁻¹) = $U_{TP} X$ (%PdfS/100)

• P uptake from rock phosphate (mgP Pot⁻¹) = U_{TP} X (%PdfRP/100)

Vertisol

Effect of fungus inoculation on shoot dry matter yield and P uptake of wheat in ultisol and vertisol

Effect of fungus inoculation on specific activity (Bq mgP⁻¹) of wheat in ultisol and vertisol

Effect of fungus inoculation on percentage of P derived from soil and rock phosphates in ultisol

Sr. No.	Treatments	Ultisol			
		PdfS		PdfRP	
		%	mgP pot ⁻¹	%	mgP pot ⁻¹
1	Soil + LRP+ ³² P	90.4	0.932	9.6	0.100
2	Soil + LRP + TMPS 1 + ³² P	66.7	1.210	33.3	0.604
3	Soil + PRP + 32 P	95.3	0.906	4.7	0.045
4	Soil+ PRP+ TMPS1+ ³² P	70.3	1.063	29.7	0.449
	LSD (P<0.05)		0.126		0.076

Effect of fungus inoculation on percentage of P derived from soil and rock phosphates in vertisol

Sr. No.	Treatments	Vertisol			
		PdfS		PdfRP	
		%	mgP pot ⁻¹	%	mgP pot ⁻¹
1	Soil + LRP+ ³² P	98.5	1.355	1.5	0.021
2	Soil + LRP + TMPS 1 + ³² P	81.1	3.338	18.9	0.778
3	Soil + PRP + ³² P	99.3	1.356	0.7	0.010
4	Soil+ PRP+ TMPS1 + ³² P	82.7	3.425	17.3	0.716
	LSD (P<0.05)		0.825		0.095

Conclusions

- Potential use of *Aspergillus niger* TMPS1 isolate as a phosphate solubilizer in ultisol as well as vertisol.
- In general rock phosphates solubilization in alkaline vertisol does not occur, but this fungus solubilized native unavailable soil P as well as rock phosphate in vertisol.
- This study showed the advantages of using the ³²P isotope in distinguishing the contribution of bio-available native soil P and P from rock phosphates to P nutrition in plant – microbe interaction.
- This fungus should be evaluated as bio-fertilizer under field condition in different agro climatic regions for different crops.

Acknowledgement

BRIT, DAE for providing ³²P radioisotope

Head, NABTD and Director BMG, BARC, Mumbai, India

THANK-YOU